Computation of molecular electrostatics with boundary element methods.

نویسندگان

  • J Liang
  • S Subramaniam
چکیده

In continuum approaches to molecular electrostatics, the boundary element method (BEM) can provide accurate solutions to the Poisson-Boltzmann equation. However, the numerical aspects of this method pose significant problems. We describe our approach, applying an alpha shape-based method to generate a high-quality mesh, which represents the shape and topology of the molecule precisely. We also describe an analytical method for mapping points from the planar mesh to their exact locations on the surface of the molecule. We demonstrate that derivative boundary integral formulation has numerical advantages over the nonderivative formulation: the well-conditioned influence matrix can be maintained without deterioration of the condition number when the number of the mesh elements scales up. Singular integrand kernels are characteristics of the BEM. Their accurate integration is an important issue. We describe variable transformations that allow accurate numerical integration. The latter is the only plausible integral evaluation method when using curve-shaped boundary elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Modified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems

In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...

متن کامل

Efficient and Accurate Higher-order Fast Multipole Boundary Element Method for Poisson Boltzmann Electrostatics

The Poisson-Boltzmann equation is a partial differential equation that describes the electrostatic behavior of molecules in ionic solutions. Significant efforts have been devoted to accurate and efficient computation for solving this equation. In this paper, we developed a boundary element framework based on the linear time fast multipole method for solving the linearized PoissonBoltzmann equat...

متن کامل

DUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES

The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...

متن کامل

Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind

This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 73 4  شماره 

صفحات  -

تاریخ انتشار 1997